▶ Fonctions Exponentielles <</p>

⊗ Définition:

• La fonction Exponentielle est la bijection réciproque de la fonction Logarithme Népérien qu'on $x \mapsto e^x$ $x \mapsto exp(x)$ ou note:

Conséquences:

• la fonction exponentielle est **définie** sur **IR** .

• Pour tout $x \in IR$ et $y \in IR^*$ on a : $[y = e^x] \Leftrightarrow [x = Ln y]$ d'ou : $\begin{cases} e^{\ln y} = y & \text{pour tout } y \in \mathbf{IR}^*_+. \\ Ln e^x = x & \text{pour tout } x \in \mathbf{IR}. \end{cases}$

- $e^x > 0$ pour tout $x \in IR$.
- La fonction exponentielle est strictement croissante sur IR.
- Pour tous réels a et b on a :

 $\begin{array}{cccc}
e^{a} = e^{b} & \Leftrightarrow & a = b \\
e^{a} \geq & e^{b} & \Leftrightarrow & a^{\geq} b
\end{array}$

• La courbe de la fonction exponentielle est la symétrique de celle de la fonction Logarithme Népérien par rapport à la droite : y = x.

⊗ Limites:

• $\lim_{x \to \infty} e^x = +\infty$

 $\bullet \lim_{x \to +\infty} \frac{e^x}{x} = +\infty \qquad \bullet \lim_{x \to +\infty} \frac{e^{mx}}{x^n} = +\infty$

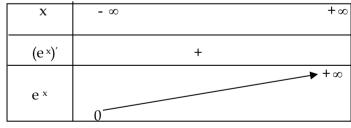
 $\bullet \lim_{x \to -\infty} e^x = 0$

 $\bullet \lim_{x \to -\infty} x e^{x} = 0 \qquad \bullet \lim_{x \to -\infty} x^{n} \cdot e^{mx} = 0 \qquad \bullet \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1 .$

\otimes Sens de variation :

La fonction exponentielle est dérivable sur IR et sa fonction dérivée est lui-même.

On a donc: $(e^x)' = e^x$ et le tableau de variation suivant:



⊗ Propriétés :

Proprietes:

Pour tout réels a et b on a :

$$e^{a+b} = e^a e^b \qquad e^{a-b} = \frac{e^a}{e^b}$$

$$e^{-a} = \frac{1}{e^a} \qquad e^{a-b} = e^{rx} \text{ pour tout } r \in Q$$

⊗ Dérivées et primitives :

• Si la fonction u est dérivable sur un intervalle I de IR alors : la fonction $x \mapsto \exp o u (x)$ est dérivable sur I et on a : $(e^{u(x)})' = u'(x) \cdot e^{u(x)} \cdot ((e^{ax})' = ae^{ax})$

• Si f (x) = u '(x) .e u (x) alors les primitives de f sont les fonctions F définies sur I par :

 $F(x) = e^{u(x)} + k$. avec $k \in IR$; (Une primitive de (e^{ax}) est $\frac{1}{a}e^{ax}$)