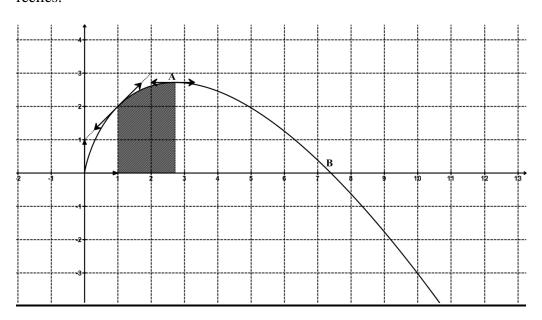
4T Série de révision n°1 Prof : Selmi Sofien

Exercice n°1

Dans le plan muni d'un repère orthonormé, on considère la courbe ζ suivante d'une fonction $f \text{ définie sur } \left[0,+\infty\right[\text{ par : } \begin{cases} f(x)=\alpha.x+\beta.x\ln(x) & \text{ xi } x>0\\ f(0)=0 \end{cases} \text{ où } \alpha \text{ et } \beta \text{ sont des constantes réelles.}$



- 1) a- Par lecture graphique ; Déterminer f(1) et f '(1).
 - b- En déduire les valeurs des réels α et β .
 - c- Etudier la dérivabilité de f à droite en 0 et interpréter graphiquement le résultat.
- 2) Au point A, la courbe ζ admet une tangente horizontale.
 - a- Vérifier que le point A, a pour coordonnées (e,e).
 - b- Dresser alors à partir du graphe le tableau des variations de la fonction f.
- 3) La courbe ζ coupe l'axe des abscisses au point B.
 - a- Déterminer les coordonnées du point B.
 - b- En déduire le signe de f(x) sur $[0,+\infty[$.
- 4) a- A l'aide d'une intégration par parties, calculer $\int_{1}^{e} x \cdot \ln(x) dx$.
 - b- En déduire l'aire (en u.a) de la partie hachurée du plan.

Exercice n°2

Soit ABCDEFGH un cube de l'espace tel que AB = 1. On munit l'espace d'un repère orthonormé direct $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$.

1) a- Vérifier que : $\overrightarrow{DE} \wedge \overrightarrow{DB} = \overrightarrow{AG}$.

- b- Donner une équation cartésienne du plan P = (EBD).
- 2) On désigne par S l'ensemble des points M(x,y,z) de

l'espace tels que :
$$x^2 + y^2 + z^2 - x - y - z + \frac{1}{2} = 0$$
.

- a-Montrer que S est une sphère dont on précisera le centre Ω et le rayon R.
- b- Vérifier que $\Omega \in (AG)$.
- c- Montrer que $S \cap P$ est un cercle dont on précisera le rayon et le centre .
- 3) Soit S' la sphère de centre J(1,-1,-2) et de rayon $R' = \sqrt{\frac{15}{2}}$.
 - a- Déterminer une équation développé de S'.
 - b- Montrer que $S \cap S'$ est un cercle dont-on précisera le centre et le rayon.

Exercice n°3

Le plan est rapporté à un repère orthonormé $(\vec{O,u,v})$.

- 1) Déterminer l'ensemble E des points M d'affixe z tel que $\stackrel{Z}{=} \in IR$.
- 2) Soit z un nombre complexe tel que $Im(z) \neq 0$.

On considère les points M, N et P d'affixes respectifs z, \overline{z} et $\frac{z^2}{\overline{z}}$.

- a- Vérifier que M et N sont distincts et que $\frac{z_P z_M}{z_N z_M} = \frac{-z}{\overline{z}}$. En déduire que MP = MN.
- b- Déterminer l'ensemble des points M(z) tel que M, N et P soient alignés.
- 3) Résoudre dans \mathbb{C} , l'équation : $z^2-2iz-1+e^{2i\theta}=0$ où $\theta\in\left]0,2\pi\right[$.
- 4) On pose $z = i(1 e^{i\theta})$.
 - a- Vérifier que pour tout $\theta \in \left]0, 2\pi\right[$ on a $\text{Im}(z) \neq 0$.
 - b- Ecrire z sous forme exponentielle.
 - c- Déterminer $\boldsymbol{\theta}$ pour que MNP soit un triangle équilatéral direct.