Révision Bac 2020

Theme :intégrale

Excercice1

On considère la suite (I_n) définie pour n entier naturel non nul par : $I_n = \int_0^1 x^n e^{x^2} dx$.

1. a. Soit *g* la fonction définie sur P par $g(x) = xe^{x^2}$.

Démontrer que la fonction G définie sur P par $G(x) = \frac{1}{2}e^{x^2}$ est une primitive sur P de la fonction g.

- b. En déduire la valeur de I_1 .
- c. À l'aide d'une intégration par parties, démontrer que, pour tout entier n, supérieur ou égal à 1, on a : $I_{n+2} = \frac{1}{2}e \frac{n+1}{2}I_n.$
- d. Calculer I_3 et I_5 .
- 3. a. Montrer que, pour tout entier naturel non nul n, $I_n > 0$.
- b. Montrer que la suite (I_n) est décroissante.
- c. En déduire que la suite (I_n) est convergente. On note L sa limite.

Excercice2

On considère les suites (I_n) et (J_n) définies pour tout entier naturel n par : $I_n = \int_0^1 \frac{e^{-nx}}{1+x} dx$ et

$$J_n = \int_0^1 \frac{e^{-nx}}{(1+x)^2} dx.$$

- 1. Sont représentées ci-dessus les fonctions f_n définies sur l'intervalle [0; 1] par $f_n(x) = \frac{e^{-nx}}{1+x}$ pour différentes valeurs de n.
- a. Formuler une conjecture sur le sens de variation de la suite (I_n) en expliquant la démarche.
 - b. Démontrer cette conjecture.
 - 2. a. Montrer que pour tout entier n > 0 et pour tout nombre réel x de l'intervalle [0; 1] :.
 - b. Montrer que les suites (I_n) et (J_n) sont conve $0 \le \frac{e^{-nx}}{(1+x)^2} \le \frac{e^{-nx}}{1+x}$ rgentes et déterminer leur limite.
 - 3. a. Montrer, en effectuant une intégration par parties, que pour tout entier n>1:

$$I_n = \frac{1}{n} \left(1 - \frac{e^{-n}}{2} - J_n \right)$$

b. En déduire lim nI_n.

Exercice 3

1/ Montrer en intégrant par partie que
$$\int_0^{\pi/2} x \cos(2x) dx = -\frac{1}{2}$$

2/ On donne
$$A=\int_0^{\pi/2}x\cos^2(x)\,dx$$
 et $B=\int_0^{\pi/2}x\sin^2(x)\,dx$

a) Calculer A + B et A - B (Indication
$$\cos^2(a) - \sin^2(a) = \cos(2a)$$
)

b) Déduire les valeurs de A et B

3/ Soit f la fonction définie sur
$$[0,+\infty[$$
 par : $f(x) = \sqrt{x}\cos(x)$

On donne
$$C = \left\{ M(x, y) \text{ tel que } y = f(x) \text{ et } 0 \le x \le \frac{\pi}{2} \right\}$$

Calculer le volume V du solide de révolution engendré par la rotation de C autour de l'axe des abscisses

Exercice N°4

On considère une fonction f définie sur IR.

- A) La courbe (C) ci-dessous est celle de la fonction f dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$
 - * La courbe (C) de f admet au voisinage de $-\infty$ une branche parabolique de direction celle de $\left(O,\vec{j}\right)$
 - * La tangente à la courbe (C) au point $A(1,\frac{2}{e})$ est parallèle à (O,i).
- * La droite (O, \hat{i}) est une asymptote à (C) au voisinage $\det + \infty$.

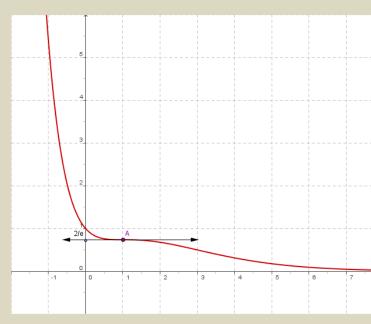
En utilisant le graphe:

- 1/ Déterminer les limites de f en $+\infty$ et en $-\infty$.
 - 2/ Préciser le sens de variation de f.
 - 3/ Déterminer f(1) et f'(1).
 - 4/ Que représente le point A pour (C).
- B) La courbe (C) est en fait celle de la fonction définie sur IR par $f(x) = (x^2 + 1)e^{-x}$.

Pour tout entier naturel non nul n, on désigne par A_n l'aire de la partie du plan limitée par la courbe (C) , l'axe des abscisses et les droites d'équation respective x=o et x=n.

1/ A l'aide d'une intégration par parties calculer

l'intégrale
$$I_n = \int_0^n x e^{-x} dx$$
.



2/ Vérifier que pour tout x de IR on a : $f'(x) + f(x) = 2xe^{-x}$.

3/ a) En déduire que $A_n = 2I_n - f(n) + 1$.

b) Calculer $\lim_{n\to +\infty} A_n$.

Exercice5:

Pour tout entier naturel n, on définit $I_n = \int_0^{\frac{\pi}{2}} e^{-nx} \sin x dx$ et $J_n = \int_0^{\frac{\pi}{2}} e^{-nx} \cos x dx$.

1. Calculer I_0 et J_0

2. En intégrant par parties I_n puis J_n montrer que $\begin{cases} I_n + nJ_n = 1 \\ -nI_n + J_n = e^{-n\frac{\pi}{2}} \end{cases}$.

3. En déduire les expressions de I_n et J_n en fonction de n

4. Déterminer la limite de I_n et celle de J_n quand n tend vers $+\infty$.

Excercice6

:On considère la fonction f définie sur] – 1 , 1 [par f (x) = $\frac{1}{1-x^2}$

1. Etudier la variation de f et représenter sa courbe(C) dans un repère orthonormé.

2. Soit g(x) =
$$\int_{0}^{x} f(t) dt$$
 pour x de] -1,1[, u(x) = sin x pour x de] - $\frac{\pi}{2}$, $\frac{\pi}{2}$ [et F(x) = $\int_{0}^{\sin x} f(t) dt$

a- Montrer que F est dérivable sur] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [et calculer F'(x)

b- Montrer que pour x de] $-\frac{\pi}{2}$, $\frac{\pi}{2}$]; F(x) = x. c) Calculer $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-t^2}} dt$.

3. Soit A l'aire de la partie du plan limité par la courbe (C), l'axe des abscisses et les droites d'équation

$$x = -\frac{\sqrt{2}}{2}$$
 et $x = \frac{\sqrt{2}}{2}$.

Montrer que A= $F(\frac{\pi}{4}) - F(-\frac{\pi}{4})$. Déduire A.

4. Soit $C = \{ M(x, y) \text{ tel que } y = \sqrt{-t} \ f(t), -\frac{1}{2} \le t \le 0 \} \text{ et } S \text{ le solide obtenue par } t \le t \le 0 \}$

rotation de (C) autour de l'axe (o x). Calculer V(S)

Excercice7

Soit f la fonction définie sur
$$]-1,1$$
 [par : $f(x) = \frac{x^2}{\sqrt{1-x^2}}$.

- 1) Etudier f et construire sa courbe représentative ζ dans un au repère orthonormé (O, \hat{i}, \hat{j}) .
- 2) Pour $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on pose: $F(x) = \int_0^{\sin x} f(t) dt$.
 - a) Montrer que F est impaire.
 - b) Montrer que F est dérivable sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et calculer F'(x) pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.
- 3) Calculer l'aire de la partie limitée par la courbe ζ , l'axe des abscisses et les droites x = 0 et $x = \frac{1}{2}$.
- 4) Calculer $I = \int_0^{\frac{1}{2}} \sqrt{1-x^2} dx$.

Excercice8

Soit la suite (I_n) définie par $I_n = \int_{-1}^{0} (1+x)^n e^{2x} dx$ pour tout n de N*.

- 1) Calculer I 1 à l'aide d'une intégration par parties.
- 2)a)Montrer que $I_n \ge o$ pour tout $n \in N^*$
 - b) Montrer que In est décroissante. En déduire qu'elle est convergente.
- 3) Vérifier que pour $x \in [-1, 0]$ on $a : e^{-2} \le e^{2x} \le 1$; Montrer alors que pour tout n de N* on

a:
$$\frac{e^{-2}}{n+1} \le I_n \le \frac{1}{n+1}$$
 et déduire la limite de I_n .

- 4) A l'aide d'une intégration par parties montrer que : 2 I_{n+1} + (n+1). I_n = 1.
- 5) En déduire la valeur de I₂ puis celle de J = $\int_{-1}^{0} (x^2 + 2x)e^{2x} dx$.

Excercice9

4) Soit $I = O_1^{e} \frac{(\ln x)^3}{x}$ alors I est égale a : a)3 b) - $\frac{1}{4}$ c) $\frac{1}{4}$

Soit la suite définie sur IN par $U_n = \int_0^1 \frac{e^{-nx}}{1+e^{-x}} dx$

- 1. Montrer que $U_1 = \ln\left(\frac{2\varepsilon}{1+\varepsilon}\right)$. 2. Vérifier que $\frac{1}{1+\varepsilon^{-x}} = 1 \frac{\varepsilon^{-x}}{1+\varepsilon^{-x}}$ puis calculer U_0
- 3. Montrer que la suite U est décroissante et positive.
- 4. a) Montrer que pour tout $n \in IN^*$: $U_n + U_{n+1} = \frac{1-e^{-n}}{n}$.
 - b) Montrer que pour tout $n \in IN^*$: $\frac{1-e^{-n}}{2n} \le U_n \le \frac{1-e^{-n}}{n}$. c) Calculer $\lim_{n \to +\infty} U_n$.
- 5. On pose pour tout $n \in IN^*$: $V_n = \int_{\ln (n)}^{\ln (n+1)} \frac{1}{1+e^{-x}} dx$ et $S_n = \sum_{k=1}^n V_k$

a) Calculer V_n en fonction de n . Calculer $\lim_{n\to+\infty} V_n$. b) Calculer S_n en fonction de n . Calculer $\lim_{n\to+\infty} S_n$

Excercice10

Soient les intégrales suivantes :

$$I = \int_0^1 \frac{dx}{\sqrt{x^2 + 2}}$$

$$I = \int_0^1 \frac{dx}{\sqrt{x^2 + 2}} \qquad J = \int_0^1 \frac{x^2}{\sqrt{x^2 + 2}} dx$$

$$K = \int_0^1 \sqrt{x^2 + 2} dx$$

1)

Soit f la fonction définie sur [0; 1] par $f(x) = \ln(x + \sqrt{x^2 + 2})$.

- a) Calculer la dérivée f' de f.
- b) En déduire la valeur de I.

2)

- a) Sans calculer explicitement J et K, vérifier que J + 2I = K.
- b) A l'aide d'une intégration par parties portant sur l'intégrale K, Montrer que K = $\sqrt{3}$ – J.
- c) En déduire les valeurs de J et K.

Excercice11

1. Soit f une fonction définie sur $-\frac{\pi}{2}$, $\frac{\pi}{2}$ par f (x) = tg x.

Etudier les variations de f et déduire que f est une bijection de $\left|-\frac{\pi}{2}, \frac{\pi}{2}\right|$ sur IR.

2. Soit g une fonction définie sur $g(x) = \int_{a}^{x} \frac{1}{1+t^2} dt$

Montrer que g est dérivable sur IR et calculer g ' (x) .

3. Soit h (x) = $\int_{0}^{3} \frac{1}{1+t^2} dt$

Montrer que h est dérivable sur $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$ et calculer h'(x).

- 4. Expliciter h (x)
- 5. En déduire que $g = f^{-1}$ et calculer $(f^{-1})^{-1}$

Excercice12

Soit f la fonction définie sur IR par : $f(x) = \int_{-1}^{x} \frac{1}{t^2 + 1} dt$

On ne cherchera pas à calculer cette intégrale.

- 1) Justifier que f est dérivable sur IR et s'annule une seule fois sur IR.
- 2) Déterminer une équation de la tangente à la courbe représentant f au point d'abscisse 1.

Excercice13

- 1. Calculer la dérivée de la fonction f définie sur 3 par : $f(x) = \ln(4 + e^{-x})$.
- **2.** En déduire la valeur de l'intégrale : $\int_{0}^{\ln 2}$ Error! dx

Excercice14

Soient f et g les fonctions définies sur R^{+*} . par :

$$f(x) =$$
Error! $- \ln x$ et $g(x) = x \ln x - x$.

- **1.** Calculer g'(x). En déduire les primitives de f sur \mathbb{R}^{+*} .
- **2.** Calculer $\int_{1}^{e} f(x)dx$.

Excercice15

Partie A: Soit l'équation différentielle (E): $y' + y = e^{-x}$

- 1) Montrer que la fonction $u(x) = xe^{-x}$ est une solution de(E).
- 2) Résoudre l'équation différentielle (E_0) : y'+y=0
- 3) Montrer qu'une solution v dérivable sur IR est solution de (E) si et seulement si v u est solution de (E_0) .
- 4) En déduire toutes les solutions de(E).
- 5) Déterminer la fonction f_2 solution de (E) qui prend la valeur 2 en 0.

Partie B: Soit k un réel donné et soit $f_k(x) = (x+k)e^{-x}$ et ζ_k sa courbe dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) Déterminer les limites de f_k en $+\infty$ et en $-\infty$.
- 2) Dresser le tableau de variation de f_k .

Partie C: On considère la suite (I_n) définie par $I_0 = \int_{-2}^0 e^{-x} dx$ et pour tout $n \ge 1$ $I_n = \int_{-2}^0 x^n e^{-x} dx$.

- 1) a) Calculer I_0 .
 - b) Montrer que $I_{n+1} = (-2)^{n+1}e^2 + (n+1)I_n$.
 - c) En déduire I_1 et I_2 .
- 2) Le graphique ci-dessous représente une courbe ζ_k qui représente une fonction f_k

