
Exercice n°1

On donne: Masse molaire atomique du Cadmium: M = 112 g.mol-1

On réalise, à 25°C, la pile électrochimique (P) schématisée sur la figure 1.

- Le <u>bécher 1</u> contient une solution aqueuse de sulfate de fer FeSO₄ de concentration molaire C₁ et de volume V = 0,1 L.
- Le <u>bécher 2</u> contient une solution aqueuse de sulfate de cadmium CdSO₄ de concentration molaire C₂ et de volume V = 0,1 L.

On suppose que la température et les volumes des solutions électrolytiques dans les deux béchers restent constants au cours du fonctionnement de la pile (P).

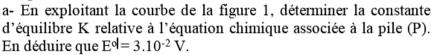
- 1) Donner le symbole de la pile (P) et écrire l'équation de la réaction chimique qui lui est associée.
- 2) Préciser le rôle du pont salin dans une telle pile.
- 3) On donne le potentiel standard d'électrode du couple $Fe^{2+}/Fe : E^0 (Fe^{2+}/Fe) = -0.44 \text{ V}.$
 - a- Définir le potentiel standard d'électrode d'un couple Ox/Red.
 - b- Donner le schéma annoté d'une pile électrochimique (P_x) qui permet la mesure du potentiel standard d'électrode E^0 (Cd²⁺/Cd) du couple Cd²⁺/Cd.
 - c- Déterminer E^0 (Cd²⁺/Cd) sachant que la f.é.m. de la pile (P₀) est $E_x = -0.41$ V. En déduire la constante d'équilibre K_0 de l'équation chimique associée à (P_x).
- 4) La pile (P) réalisée est telles les concentrations initiales C₁ et C₂ vérifient la relation: C₁ + C₂ = 5,2.10⁻² mol.L⁻¹ et la mesure de sa f.é.m. donne : E= 29 mV. Déterminer la valeur de C₁ et celle de C₂.
- 5) A t = 0, on ferme l'interrupteur K. La pile (P) débite un courant électrique dans le dipôle (D).
 - a- Ecrire l'équation de la réaction chimique qui se produit dans la pile (P).
 - b- En déduire que le métal déposé est le cadmium Cd.
- 6) A un instant de date t_0 , on ouvre l'interrupteur K. La masse du cadmium déposé à cet instant est $m_0 = 56$ mg.
 - a- Déterminer à cette date les concentrations molaires $[Fe^{2+}]_0$ et $[Cd^{2+}]_0$.
 - b- Montrer que l'instant t_0 ne correspond pas à un état usée (E = 0 V) de la pile.
 - c- Pour que la pile obtenue à to soit usée, on réalise l'une des opérations suivantes :
 - On introduit dans le bécher 1, sans changement de volume et de température, la soude NaOH à l'état solide.
 - On introduit dans le bécher 1, sans changement de volume et de température, le sulfate de fer FeSO₄ à l'état solide.
 - On introduit dans le bécher 2, sans changement de volume et de température, le sulfate de cadmium CdSO₄ à l'état solide.

La quelle des opérations ci-dessus parait-elle convenable ? Justifier la réponse.

Exercice n°2

On donne : $Co = 58,9 \text{ g.mol}^{-1}$

On réalise, à 25°C, une pile électrochimique (P) formée par deux demi-piles A et B reliées par un pont électrolytique contenant les ions K⁺ et Cℓ⁻.


La demi-pile A est constituée par une lame de cobalt Co qui plonge dans un bécher (1) contenant une solution aqueuse (S) de sulfate de cobalt CoSO₄ telle que [Co²⁺] = C.

- La demi-pile B est constituée par une lame de nickel Ni qui plonge dans un bécher (2) contenant une solution aqueuse (S_0) de sulfate de nickel NiSO₄ telle que [Ni^{2+}] = $C_0 = 5.10^{-3}$ mol.L⁻¹.

On suppose que les volumes des deux solutions contenues dans les demi-piles sont égaux de valeur V = 0.17 L et restent constants au cours de son fonctionnement.

La f.é.m. de la pile (P) réalisé, s'écrit : $E = E^{\circ} + 0.03 \log \frac{C_0}{C}$ où E° représente la f.é.m. standard de la pile (P).

- 1) a- Montrer que la pile (P) est représentée par : Co| Co²⁺ (C) || Ni²⁺ (C₀) | Ni.
 - b-Faire le schéma annoté de la pile (P) et préciser le rôle du pont électrolytique.
 - c- Ecrire l'équation de la réaction associée à la pile (P).
- 2) On maintient la valeur de la concentration des ions Ni²⁺ constante. Pour différentes valeurs de la concentration C en ions Co²⁺, on mesure à l'aide d'un voltmètre la f.é.m. initiale E de la pile (P) réalisée. L'ensemble des résultats expérimentaux, a permis de suivre les variations de E en fonction de log Co C On obtient la courbe de la figure 1.

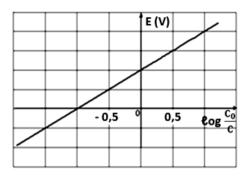


Figure 1

- b- Comparer le pouvoir des déducteur Co et Ni.
- c- Déterminer les valeurs de C pour lesquelles, la borne positive de la pile (P) est Co.
- 3) a- Définir le potentiel standard d'électrode d'un couple Ox/Red.
 - b- Donner le symbole et le schéma d'une pile (P_o) qui permet la mesure du potentiel standard d'électrode $E^o_{Co^{2+}/Co}$ du couple redox Co^{2+}/Co .
 - c- Dans les conditions standards, la f.é.m. de la pile (P_0) est $E_0 = -0.28$ V.
 - Comparer le pouvoir oxydant des couples redox mis en jeux dans la pile (P_o).
 - Déterminer le potentiel standard E^o_{Ni²⁺/Ni} du couple Ni²⁺/Ni.
- 4) On réalise la pile électrochimique (P_x) symbolisée par : Co $|Co^{2+}(C=x)||Ni^{2+}(C_0=5.10^{-3} \text{ mol.L}^{-1})|Ni$. et de f.é.m. initiale E_i .
 - A t = 0, on relie les bornes de la pile (P_x) à celles d'un résistor. On constate la formation d'un dépôt de cobalt.
 - a-Ecrire l'équation de la transformation qui se produit au niveau de chaque électrode. En déduire dans ce cas l'équation de la réaction qui se produit spontanément.
 - b-Préciser, en le justifiant, l'anode de la pile (P_x). En déduire le signe de la f.é.m. E_i.
- c- A l'instant de date t_1 , on débranche le résistor. La mesure de la f.é.m. de pile (P_1) obtenue est $E_1 = -8,5.10^{-3} \text{ V}$ et le dépôt de cobalt obtenu a une masse m = 0,2 g. Déterminer à la date t_1 , les concentrations molaires $[Co^{2+}]_1$ et $[Ni^{2+}]_1$. En déduire les valeurs x et E_i .