B.H. Mourad

Equations différentielles

Niveau: 4^{ère} SC

Equations différentielles du type y'=ay

Soit a un réel. L'ensemble des solutions de l'équation différentielle y' = ay est

l'ensemble des fonctions définies sur \mathbb{R} par $f: x \mapsto ke^{ax}$, où k est un réel quelconque. Soit a un réel non nul. Pour tous réels x_0 et y_0 , l'équation y' = ay admet une unique solution qui prend la valeur y_0 en x_0 .

C'est la fonction définie sur \mathbb{R} par $f: x \mapsto y_0 e^{a(x-x_0)}$.

Equations différentielles du type y'=ay+b

Soit a et b deux réels tels que $a \neq 0$.

L'ensemble des solutions de l'équation différentielle y' = ay + b est l'ensemble des fonctions $f: x \mapsto ke^{ax} - \frac{b}{a}$, où k est un réel quelconque.

De plus pour tous réels x_0 , y_0 , la fonction $f: x \mapsto \left(y_0 + \frac{b}{a}\right) e^{a(x-x_0)} - \frac{b}{a}$ est l'unique solution de y' = ay + b, telle que $f(x_0) = y_0$.

Equations différentielles du type $y'' + \omega^2 y = 0$

Soit w un réel non nul.

L'ensemble des solutions de l'équation différentielle $y'' + \omega^2 y = 0$ est l'ensemble des fonctions définies sur \mathbb{R} par $f(x) = A \sin(\omega x) + B \cos(\omega x)$, $(A,B) \in \mathbb{R}^2$.

Soit ω un réel non nul et x_0 , y_0 deux réels.

L'équation $y'' + \omega^2 y = 0$ admet une unique solution dans \mathbb{R} vérifiant $f(0) = x_0$ et $f'(0) = y_0$.

C'est la fonction définie sur \mathbb{R} par $f(x) = \frac{y_0}{\omega} \sin(\omega x) + x_0 \cos(\omega x)$.

Exercice n:1

- 1/ Résoudre l'équation différentielle : y' 2y = 0
- 2/ Soit la fonction f définie par $f(x) = 2.x.e^{2x} + 1$
 - a- Vérifier que f est une solution de l'équation différentielle (E) : $y'-2y=2.e^{2x}-2$
 - b- Déduire l'ensemble de solutions de (E)
- 3/ Résoudre l'équation différentielle : y'' 2y' = 0

Mathématiques

Exercice n:2

- 1)a- Résoudre l'équation différentielle y'+y=0
 - b- On considère l'équation différentielle (E) : $y'+y=2x.e^{-x}$
 - i) Vérifier que la fonction $f(x) = x^2 \cdot e^{-x}$ est une solution de (E)
 - ii) Déduire la solution de (E) qui s'annule en $\sqrt{3}$

Exercice n:3

On considère l'équation différentielle (E) : $y' = 2y + \cos x$.

- 1/ Déterminer deux nombres réels a et b tels que la fonction f_0 définie sur \mathbb{R} par : $f_0(x) = a\cos x + b\sin x$ soit une solution de (E).
- 2/ Résoudre l'équation différentielle (E₀): y' = 2y.
- 3/ Démontrer que f est solution de (E) si et seulement si (f-f₀) est solution de (E₀).
- 4/ Déterminer la solution g de (E) vérifiant $g\left(\frac{\pi}{2}\right) = 0$.

Exercice n:4

Déterminer la solution f de l'équation différentielle y'' + 4y = 0, telle que

$$f\left(\frac{\pi}{2}\right) = -1$$
 et $f'\left(\frac{\pi}{2}\right) = 2$.

Exercice n:5

Un mobile se déplace sur un axe horizontal (x'x) avec un mouvement uniformément varié.

On désigne par x(t) la position du mobile à l'instant, x'(t) sa vitesse et x''(t) son accélération. (t est exprimé en secondes et x(t) en mètres).

On suppose de plus qu' à tout instant t, l'accélération x''(t) est proportionnelle à x(t)

avec un coefficient égal à $-\frac{\pi^2}{4}$.

- 1. Donner l'équation horaire du mouvement si l'on sait que x(1) = 2 et x(2) = 0.
- 2. déterminer la position et la vitesse du mobile à l'instant t=0.
- 3. Représenter $t \mapsto x(t)$.